Human cytomegalovirus infection alters the substrate specificities and rapamycin sensitivities of raptor- and rictor-containing complexes.

نویسندگان

  • Sagar B Kudchodkar
  • Yongjun Yu
  • Tobi G Maguire
  • James C Alwine
چکیده

Signaling mediated by the mammalian target of rapamycin kinase (mTOR) is activated during human cytomegalovirus (HCMV) infection. mTOR is found in two complexes differing by the binding partner, rictor or raptor. Activated mTOR-raptor promotes cap-dependent translation through the hyperphosphorylation of the eIF4E-binding protein (4E-BP). This activity of the raptor complex is normally inhibited by cell stress responses or the drug rapamycin. However, we previously showed that this inhibition of mTOR signaling can be circumvented during HCMV infection such that hyperphosphorylation of 4E-BP is maintained. Here we show that HCMV infection also activates the rictor complex, as indicated by increased phosphorylation of Akt S473; this phosphorylation is insensitive to rapamycin but sensitive to caffeine in both uninfected and infected cells. By using short-hairpin RNAs to deplete rictor and raptor, we find that rictor is more significant than raptor for the viral infection. Surprisingly, the inhibitory effects of rapamycin on viral growth are primarily due to the presence of rictor, not raptor. Raptor and rictor depletion experiments show that in HCMV-infected cells, both raptor- and rictor-containing complexes can mediate the hyperphosphorylation of 4E-BP and the phosphorylation of p70S6 kinase. Under these conditions, the rictor complex is rapamycin-sensitive for the hyperphosphorylation of 4E-BP, but the raptor complex is not. These data suggest that, during HCMV infection, the rictor- and raptor-containing complexes are modified such that their substrate specificities and rapamycin sensitivities are altered. Our data also suggest that the present understanding of rapamycin's inhibitory effects is incomplete.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1.

The mammalian target of rapamycin (mTOR) is part of two distinct complexes, mTORC1, containing raptor and mLST8, and mTORC2, containing rictor, mLST8 and sin1. Although great endeavors have already been made to elucidate the function and regulation of mTOR, the cytoplasmic nuclear distribution of the mTOR complexes is unknown. Upon establishment of the proper experimental conditions, we found m...

متن کامل

Mechanism of Activation of AMPK and Upregulation of OGG1 by Rapamycin in Cancer Cells

AMPK is a physiological cellular energy sensor that is activated by phosphorylation at Thr172 in response to changes in cellular ATP levels. AMPK has been recognized as an important upstream signaling intermediate intimately involved in the regulation of the mTOR pathway [1]. AMPK responds to energy stress by suppressing cell growth and biosynthetic processes, in part through its inhibition of ...

متن کامل

Rictor, a Novel Binding Partner of mTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the Cytoskeleton

The mammalian TOR (mTOR) pathway integrates nutrient- and growth factor-derived signals to regulate growth, the process whereby cells accumulate mass and increase in size. mTOR is a large protein kinase and the target of rapamycin, an immunosuppressant that also blocks vessel restenosis and has potential anticancer applications. mTOR interacts with the raptor and GbetaL proteins to form a compl...

متن کامل

SIN1/MIP1 Maintains rictor-mTOR Complex Integrity and Regulates Akt Phosphorylation and Substrate Specificity

Mammalian target of rapamycin (mTOR) controls cell growth and proliferation via the raptor-mTOR (TORC1) and rictor-mTOR (TORC2) protein complexes. Recent biochemical studies suggested that TORC2 is the elusive PDK2 for Akt/PKB Ser473 phosphorylation in the hydrophobic motif. Phosphorylation at Ser473, along with Thr308 of its activation loop, is deemed necessary for Akt function, although the r...

متن کامل

HLA class I antibody-mediated endothelial cell proliferation via the mTOR pathway.

Anti-HLA Abs have been shown to contribute to the process of transplant vasculopathy by binding to HLA class I molecules expressed by the endothelial and smooth muscle cells of the graft and transducing intracellular signals that elicit cell proliferation. The aim of this study was to determine the role of mammalian target of rapamycin (mTOR) in HLA class I-induced endothelial cell proliferatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 38  شماره 

صفحات  -

تاریخ انتشار 2006